By Topic

Retrospective correction of intensity inhomogeneities in MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. R. Meyer ; Dept. of Radiol., Michigan Univ., Ann Arbor, MI, USA ; P. H. Bland ; J. Pipe

Medical imaging data sets are often corrupted by multiplicative inhomogeneities, often referred to as nonuniformities or intensity variations, that hamper the use of quantitative analyses. The authors describe an automatic technique that not only improves the worst situations, such as those encountered with magnetic resonance imaging (MRI) surface coils, but also corrects typical inhomogeneities encountered in routine volume data sets, such as MRI head scans, without generating additional artifact. Because the technique uses only the patient data set, the technique can be applied retrospectively to all data sets, and corrects both patient independent effects, such as rf coil design, and patient dependent effects, such as attenuation of overlying tissue experienced both in high field MRI and X-ray computed tomography (CT). The authors show results for several MRI imaging situations including thorax, head, and breast. Following such corrections, region of interest analyses, volume histograms, and thresholding techniques are more meaningful. The value of such correction algorithms may increase dramatically with increased use of high field strength magnets and associated patient-dependent rf attenuation in overlying tissues

Published in:

IEEE Transactions on Medical Imaging  (Volume:14 ,  Issue: 1 )