By Topic

Using a neural/fuzzy system to extract heuristic knowledge of incipient faults in induction motors. Part I-Methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goode, P.V. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Mo-yuen Chow

The use of electric motors in industry is extensive. These motors are exposed to a wide variety of environments and conditions which age the motor and make it subject to incipient faults. These incipient faults, if left undetected, contribute to the degradation and eventual failure of the motors. Artificial neural networks have been proposed and have demonstrated the capability of solving the motor monitoring and fault detection problem using an inexpensive, reliable, and noninvasive procedure. However, the major drawback of conventional artificial neural network fault detection is the inherent black box approach that can provide the correct solution, but does not provide heuristic interpretation of the solution. Engineers prefer accurate fault detection as well as the heuristic knowledge behind the fault detection process. Fuzzy logic is a technology that can easily provide heuristic reasoning while being difficult to provide exact solutions. The authors introduce the methodology behind a novel hybrid neural/fuzzy system which merges the neural network and fuzzy logic technologies to solve fault detection problems. They also discuss a training procedure for this neural/fuzzy fault detection system. This procedure is used to determine the correct solutions while providing qualitative, heuristic knowledge about the solutions

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:42 ,  Issue: 2 )