By Topic

System reliability analysis of an N-version programming application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bechta Dugan, J. ; Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA ; Lyu, M.R.

This paper presents a quantitative reliability analysis of a system designed to tolerate both hardware and software faults. The system achieves integrated fault tolerance by implementing N-version programming (NVP) on redundant hardware. The system analysis considers unrelated software faults, related software faults, transient hardware faults, permanent hardware faults, and imperfect coverage. The overall model is Markov in which the states of the Markov chain represent the long-term evolution of the system-structure. For each operational configuration, a fault-tree model captures the effects of software faults and transient hardware faults on the task computation. The software fault model is parameterized using experimental data associated with a recent implementation of an NVP system using the current design paradigm. The hardware model is parameterized by considering typical failure rates associated with hardware faults and coverage parameters. The authors results show that it is important to consider both hardware and software faults in the reliability analysis of an NVP system, since these estimates vary with time. Moreover, the function for error detection and recovery is extremely important to fault-tolerant software. Several orders of magnitude reduction in system unreliability can be observed if this function is provided promptly

Published in:

Reliability, IEEE Transactions on  (Volume:43 ,  Issue: 4 )