By Topic

A general computational framework for distributed sensing and fault-tolerant sensor integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iyengar, S.S. ; Robotics Res. Lab., Louisiana State Univ., Baton Rouge, LA, USA ; Prasad, L.

Proposes an abstract framework to address the problem of fault-tolerant integration of information provided by multiple sensors. This paper presents a formal description of spatially distributed sensor networks, where i) clusters of sensors monitor (possible overlapping) regions of the environment; ii) sensors return measured values of a multidimensional parameter of interest; and iii) uncertainties associated with a sensor output are represented by a connected subset in the parameter space. A method to obtain interval estimates of components of the actual parameter vector is developed, wherein information from faulty sensors are filtered out. The problem addressed involves combining interval estimates of sensor outputs into a best intersection estimate of outputs. The sensor fault model used assumes most faults cluster in the neighborhood of the correct values. The procedure of this paper is superior to earlier work. To test the theoretical analysis of the framework proposed, we have developed a modular parameter-driven simulator SIMDSN for the fault-tolerant integration of abstract sensor interval estimates. The simulator uses the well-known Monte-Carlo technique to generate random correct and tamely faulty intervals

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )