By Topic

QPSK block-modulation codes for unequal error protection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Morelos-Zaragoza, R.H. ; Fac. of Eng., Osaka Univ., Japan ; Shu Lin

Unequal error protection (UEP) codes find applications in broadcast channels, as well as in other digital communication systems, where messages have different degrees of importance. Binary linear UEP (LUEP) codes combined with a Gray mapped QPSK signal set are used to obtain new efficient QPSK block-modulation codes for unequal error protection. Several examples of QPSK modulation codes that have the same minimum squared Euclidean distance as the best QPSK modulation codes, of the same rate and length, are given. In the new constructions of QPSK block-modulation codes, even-length binary LUEP codes are used. Good even-length binary LUEP codes are obtained when shorter binary linear codes are combined using either the well-known |u¯|u¯+v¯|-construction or the so-called construction X. Both constructions have the advantage of resulting in optimal or near-optimal binary LUEP codes of short to moderate lengths, using very simple linear codes, and may be used as constituent codes in the new constructions. LUEP codes lend themselves quite naturally to multistage decoding up to their minimum distance, using the decoding of component subcodes. A new suboptimal two-stage soft-decision decoding of LUEP codes is presented and its application to QPSK block-modulation codes for UEP illustrated

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 2 )