By Topic

Optical orthogonal codes with unequal auto- and cross-correlation constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guu-Chang Yang ; Dept. of Electr. Eng., Nat. Chung-Hsing Univ., Taichung, Taiwan ; Fuja, T.E.

An optical orthogonal code (OOC) is a collection of binary sequences with good auto- and cross-correlation properties; they were defined by Salehi and others as a means of obtaining code-division multiple access on optical networks. Up to now, all work on OOCs have assumed that the constraint placed on the autocorrelation and that placed on the cross-correlation are the same. We consider-codes for which the two constraints are not equal. Specifically we develop bounds on the size of such OOCs and demonstrate constriction techniques for building them. The results demonstrate that a significant increase in the code size is possible by letting the autocorrelation constraint exceed the cross-correlation constraint. These results suggest that for a given performance requirement the optimal OOC may be one with unequal constraints. This paper also views OOCs with unequal auto- and cross-correlation constraints as constant-weight unequal error protection (UEP) codes with two levels of protection. The bounds derived are interpreted from this viewpoint.

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 1 )