By Topic

Packing radius, covering radius, and dual distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. Sole ; Sch. of MPCE, Macquarie Univ., North Ryde, NSW

Tietaivainen (1991) derived an upper bound on the covering radius of codes as a function of the dual distance. This was generalized to the minimum distance, and to Q-polynomial association schemes by Levenshtein and Fazekas. Both proofs use a linear programming approach. In particular, Levenshtein and Fazekas (1990) use linear programming bounds for codes and designs. In this article, proofs relying solely on the orthogonality relations of Krawtchouk (1929), Lloyd, and, more generally, Krawtchouk-adjacent orthogonal polynomials are derived. As a by-product upper bounds on the minimum distance of formally self-dual binary codes are derived

Published in:

IEEE Transactions on Information Theory  (Volume:41 ,  Issue: 1 )