Cart (Loading....) | Create Account
Close category search window
 

An improved analytical solution of energy balance equation for short-channel SOI MOSFET's and transverse-field-induced carrier heating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Omura, Y. ; NTT LSI Labs., Atsugi, Japan

This paper presents a method for solving the one-dimensional (1-D) energy balance equation for fully depleted short-channel SOI MOSFET's. This method takes the exact kinetic energy into account and provides a new analytical solution for the non-saturated drain current region. The carrier temperature for spatially homogeneous case is described as a function of the longitudinal electric field and the carrier concentration deviation. The electron temperature is higher than that predicted by old models, which is examined by the two-dimensional simulation. The experimental data on gate current characteristics in short-channel SOI nMOSFET's can be physically interpreted by the proposed 1-D model

Published in:

Electron Devices, IEEE Transactions on  (Volume:42 ,  Issue: 2 )

Date of Publication:

Feb 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.