By Topic

On seeing spaghetti: self-adjusting piecewise toroidal recognition of flexible extruded objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kender, J.R. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Kjeldsen, R.

We present a model for flexible extruded objects, such as wires, tubes, or grommets, and demonstrate a novel, self-adjusting, seven-dimensional Hough transform that derives their diameter and three-space curved axes from position and surface normal information. The method is purely local and is inexpensive to compute. The model considers such objects as piecewise toroidal, and decomposes the seven parameters of a torus into three nested subspaces, the structures of which counteract the errors implicit in the analysis of objects of great size and/or small curvature. We believe it is the first example of a parameter space structure designed to cluster ill-conditioned hypotheses together so that they can be easily detected and ignored. This work complements existing shape-from-contour approaches for analyzing tori: it uses no edge information, and it does not require the solution of high-degree nonlinear equations by iterative techniques

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 2 )