By Topic

Invariants of six points and projective reconstruction from three uncalibrated images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Long Quan ; LIFIA-CNRS-INRIAG, Grenoble, France

There are three projective invariants of a set of six points in general position in space. It is well known that these invariants cannot be recovered from one image, however an invariant relationship does exist between space invariants and image invariants. This invariant relationship is first derived for a single image. Then this invariant relationship is used to derive the space invariants, when multiple images are available. This paper establishes that the minimum number of images for computing these invariants is three, and the computation of invariants of six points from three images can have as many as three solutions. Algorithms are presented for computing these invariants in closed form. The accuracy and stability with respect to image noise, selection of the triplets of images and distance between viewing positions are studied both through real and simulated images. Applications of these invariants are also presented. Both the results of Faugeras (1992) and Hartley et al. (1992) for projective reconstruction and Sturm's method (1869) for epipolar geometry determination from two uncalibrated images with at least seven points are extended to the case of three uncalibrated images with only six points

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:17 ,  Issue: 1 )