By Topic

An application of artificial intelligence to object-oriented performance design for real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Honiden ; Syst. & Software Eng. Lab., Toshiba Corp., Kawasaki, Japan ; K. Nishimura ; N. Uchihira ; K. Itoh

The paper describes an application of artificial intelligence technology to the implementation of a rapid prototyping method in object-oriented performance design (OOPD) for real-time systems. OOPD consists of two prototyping phases for real-time systems. Each of these phases consists of three steps: prototype construction, prototype execution, and prototype evaluation. We present artificial intelligence based methods and tools to be applied to the individual steps. In the prototype construction step, a rapid construction mechanism using reusable software components is implemented based on planning. In the prototype execution step, a hybrid inference mechanism is used to execute the constructed prototype described in declarative knowledge representation. MENDEL, which is a Prolog based concurrent object-oriented language, can be used as a prototype construction tool and a prototype execution tool. In the prototype evaluation step, an expert system which is based on qualitative reasoning is implemented to detect and diagnose bottlenecks and generate an improvement plan for them

Published in:

IEEE Transactions on Software Engineering  (Volume:20 ,  Issue: 11 )