Cart (Loading....) | Create Account
Close category search window
 

Silicon bipolar device structures for digital applications: technology trends and future directions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Warnock, J.D. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA

The double-polysilicon self-aligned bipolar device structure has come a long way since its first inception, but there is still room for further scaling of this structure and continued improvements in performance. An analysis of the current state-of-the-art double-poly structure leads naturally to a discussion of future trends and technologies necessary to continue scaling into the sub-0.25 μm regime. In addition, it has become highly desirable to extend bipolar processes in new directions to take advantage of the opportunities offered by emerging materials technologies, such as bonded silicon-on-insulator films and medium or low temperature Si and SiGe epitaxy. Opportunities also exist for high-performance bipolars in BiCMOS technology and in complementary bipolar processes for low-power, high-speed digital applications. These extensions beyond “conventional” bipolar technology will be discussed in terms of their requirements and the device structures that are evolving to match these needs

Published in:

Electron Devices, IEEE Transactions on  (Volume:42 ,  Issue: 3 )

Date of Publication:

Mar 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.