By Topic

A method for fuzzy rules extraction directly from numerical data and its application to pattern classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Abe ; Res. Lab., Hitachi Ltd., Ibaraki, Japan ; Ming-Shong Lan

In this paper, we discuss a new method for extracting fuzzy rules directly from numerical input-output data for pattern classification. Fuzzy rules with variable fuzzy regions are defined by activation hyperboxes which show the existence region of data for a class and inhibition hyperboxes which inhibit the existence of data for that class. These rules are extracted from numerical data by recursively resolving overlaps between two classes. Then, optimal input variables for the rules are determined using the number of extracted rules as a criterion. The method is compared with neural networks using the Fisher iris data and a license plate recognition system for various examples

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:3 ,  Issue: 1 )