By Topic

Generalized minimal distortion segmentation for ANN-based speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sin-Horng Chen ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Wen-Yuan Chen

A generalized minimal distortion segmentation algorithm is proposed to solve the time alignment problem for ANN-based speech recognition. By modeling dynamics of spectral information of an acoustic segment with smooth curves obtained by orthonormal polynomial expansion, a speech signal is optimally divided into segments and then recognized by an MLP recognizer. Experimental results showed that the proposed method outperforms the standard CDHMM method

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:3 ,  Issue: 2 )