By Topic

Image motion estimation algorithms using cumulants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anderson, J.M.M. ; Dept. of Electr. Eng., Florida Univ., Gainesville, FL, USA ; Giannakis, G.B.

A class of algorithms is presented that estimates the displacement vector from two successive image frames consisting of signal plus noise. In the model, the signals are assumed to be either non-Gaussian or (quasistationary) deterministic; and, via a consistency result for cumulant estimators, the authors unify the stochastic and deterministic signal viewpoints. The noise sources are assumed to be Gaussian (perhaps spatially and temporally correlated) and of unknown covariance. Viewing image motion estimation as a 2D time delay estimation problem, the displacement vector of a moving object is estimated by solving linear equations involving third-order auto-cumulants and cross-cumulants. Additionally, a block-matching algorithm is developed that follows from a cumulant-error optimality criterion. Finally, the displacement vector for each pel is estimated using a recursive algorithm that minimizes a mean 2D fourth-order cumulant criterion. Simulation results are presented and discussed

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 3 )