By Topic

Enlargement or reduction of digital images with minimum loss of information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Unser ; Nat. Center for Res. Resources, Nat. Inst. of Health, Bethesda, MD, USA ; A. Aldroubi ; M. Eden

The purpose of this paper is to derive optimal spline algorithms for the enlargement or reduction of digital images by arbitrary (noninteger) scaling factors. In our formulation, the original and rescaled signals are each represented by an interpolating polynomial spline of degree n with step size one and Δ, respectively. The change of scale is achieved by determining the spline with step size Δ that provides the closest approximation of the original signal in the L2-norm. We show that this approximation can be computed in three steps: (i) a digital prefilter that provides the B-spline coefficients of the input signal, (ii) a resampling using an expansion formula with a modified sampling kernel that depends explicitly on Δ, and (iii) a digital postfilter that maps the result back into the signal domain. We provide explicit formulas for n=0, 1, and 3 and propose solutions for the efficient implementation of these algorithms. We consider image processing examples and show that the present method compares favorably with standard interpolation techniques. Finally, we discuss some properties of this approach and its connection with the classical technique of bandlimiting a signal, which provides the asymptotic limit of our algorithm as the order of the spline tends to infinity

Published in:

IEEE Transactions on Image Processing  (Volume:4 ,  Issue: 3 )