By Topic

Probability estimation in arithmetic and adaptive-Huffman entropy coders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duttweiler, D.L. ; AT&T Bell Labs., Holmdel, NJ, USA ; Chamzas, C.

Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis of the relationship between estimation quality and the resulting coding efficiency suggests a particular scheme, dubbed scaled-count, for obtaining such estimates. It can optimally balance estimation accuracy against a need for rapid response to changing underlying statistics. When the symbols being coded are from a binary alphabet, simple hardware and software implementations requiring almost no computation are possible. A scaled-count adaptive probability estimator of the type described in this paper is used in the arithmetic coder of the JBIG and JPEG image coding standards

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 3 )