By Topic

Volume integral equations for analysis of dielectric branching waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Tanaka ; Dept. of Electron. & Comput. Eng., Gifu Univ., Yanagido, Japan ; M. Kojima

Novel forms of volume integral equations are developed for the exact treatment of wave propagation in two-dimensional dielectric branching waveguides. The integral equations can be obtained by considering the condition at a point far away from the junction section. An approximate solution by the Born approximation and a numerical solution by the moment method establish the validity of the new volume integral equations. The numerical results are discussed from the viewpoint of energy conservation and reciprocity. The solution is exact if sufficiently large computer memory and computational time are used. The method can be extended to problems of a more general nature (i.e. the incident TM mode), and complex configurations of branching waveguides. The basic idea is also applicable to techniques using boundary (surface) integral equations which are applicable to three-dimensional problems

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:36 ,  Issue: 8 )