By Topic

Connectionist model combination for large vocabulary speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hochberg, M.M. ; Dept. of Eng., Cambridge Univ., UK ; Cook, G.D. ; Renals, S.J. ; Robinson, A.J.

Reports in the statistics and neural networks literature have expounded the benefits of merging multiple models to improve classification and prediction performance. The Cambridge University connectionist speech group has developed a hybrid connectionist-hidden Markov model system for large vocabulary talker independent speech recognition. The performance of this system has been greatly enhanced through the merging of connectionist acoustic models. This paper presents and compares a number of different approaches to connectionist model merging and evaluates them on the TIMIT phone recognition and ARPA Wall Street Journal word recognition tasks

Published in:

Neural Networks for Signal Processing [1994] IV. Proceedings of the 1994 IEEE Workshop

Date of Conference:

6-8 Sep 1994