By Topic

Run-time recognition of task parallelism within the P++ parallel array class library

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Parsons ; Comput. & Commun. Div., Los Alamos Nat. Lab., NM, USA ; D. Quinlan

This paper explores the use of a run-time system to recognize task parallelism within a C++ array class library. Run-time systems currently support data parallelism in P++, FORTRAN 90 D, and High Performance FORTRAN. But data parallelism is insufficient for many applications, including adaptive mesh refinement. Without access to both data and task parallelism such applications exhibit several orders of magnitude more message passing and poor performance. In this paper, a C++ array class library is used to implement deferred evaluation and run-time dependence for task parallelism recognition, to obtain task parallelism through a data flow interpretation of data parallel array statements. Performance results show that the analysis and optimizations are both efficient and practical, allowing us to consider more substantial optimizations

Published in:

Scalable Parallel Libraries Conference, 1993., Proceedings of the

Date of Conference:

6-8 Oct 1993