By Topic

Distributed solution of sparse symmetric positive definite systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heath, M.T. ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA ; Raghavan, P.

We consider the solution of a linear system Ax=b on a distributed memory machine when the matrix A is large, sparse and symmetric positive definite. In a previous paper we developed an algorithm to compute a fill-reducing nested dissection ordering of A on a distributed memory machine. We now develop algorithms for the remaining steps of the solution process. The large-grain task parallelism resulting from sparsity is identified by a tree of separators available from nested dissection. Our parallel algorithms use this separator tree to estimate the structure of the Cholesky factor L and to organize numeric computations as a sequence of dense matrix operations. We present results of an implementation on an Intel iPSC/860 parallel computer

Published in:

Scalable Parallel Libraries Conference, 1993., Proceedings of the

Date of Conference:

6-8 Oct 1993