Cart (Loading....) | Create Account
Close category search window
 

Physical models and algorithms for optoelectronic MCM layout

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiao Fan ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA ; Zaleta, D. ; Chung-Kuan Cheng ; Lee, S.H.

Future computers will need to incorporate the parallelism of optical interconnections in order to achieve projected performance within reasonable size, power and speed constraints. This is necessary since optical interconnections have advantages in size, power, and speed over "long" distance communication. These features make optical interconnects ideal for inter-module connections in multichip module systems. Free-space optical interconnection can be one form of optical interconnections. Computer generated holograms (CGHs) are extremely attractive optical components for use in free space optical interconnections due to their ability to be computer designed. We will show that the fabrication limitations of CGHs for general interconnection networks require the need for placement algorithms for large processing element (PEs) arrays. In this paper, we will demonstrate that these fundamental CGH fabrication limitations greatly influence the computer aided design of optoelectronic interconnect networks that utilize CGHs for optical interconnections. Specifically, we show that the minimum feature size directly affects the logical placement of processing elements. Various physical models for free-space optical interconnects in parallel optoelectronic MCM systems are then identified from which we derive several logical models for analysis. We then analyze these cases and present algorithms to solve the associated layout problems. Design examples are given to illustrate the benefits of utilizing these placement algorithms in real optoelectronic interconnection networks.<>

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

March 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.