By Topic

EVAM: an eigenvector-based algorithm for multichannel blind deconvolution of input colored signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. I. Gurelli ; Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA ; C. L. Nikias

A new algorithm is proposed for the deconvolution of an unknown, possibly colored, Gaussian or nonstationary signal that is observed through two or more unknown channels described by rational system transfer functions. More specifically, not only the root (pole and zero) locations but also the orders of the channel transfer functions are unknown. It is assumed that the channel orders may be overestimated. The proposed algorithm estimates the orders and root locations of the channel transfer functions, therefore it can also be used in multichannel system identification problems. The input signal is allowed to be nonstationary and the channel transfer functions may be a nonminimum phase as well as noncausal, hence the proposed algorithm is particularly suitable for applications such as dereverberation of speech signals recorded through multiple microphones. Several experimental results indicate improvement compared to the existing methods in the literature

Published in:

IEEE Transactions on Signal Processing  (Volume:43 ,  Issue: 1 )