By Topic

Optoelectronic transmitters for medical ultrasound transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Emery, C.D. ; Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA ; Swartz, John C. ; Casey, H.C., Jr. ; Smith, S.W.

Optoelectronics and fiber optics can be used to miniaturize and improve the flexibility of the transducer cable and transducer handle of medical diagnostic ultrasound scanners. The reduction in size has gained importance as 2-D array transducers with up to 1000 independent channels become accepted to improve diagnostic ultrasound images. The authors describe the analysis, design, fabrication and testing of a prototype silicon photoconductive semiconductor switch (PCSS). The monolithic silicon PCSS was used in combination with an infrared semiconductor diode laser with a fiber optic "pigtail" to shock excite and burst excite a 2-D array transducer element resonant at 2.5 MHz. Optically controlled voltage, current, and ultrasound pulses are compared to those from conventional electronic shock excitation and narrow band Doppler pulses. The optically triggered ultrasound pulse for single shock excitation produced 30 V spikes at the 2-D array element with a fall time of 200 nsec and a rise time of 2 /spl mu/sec with a peak current through the transducer element of 34 mA. An optically produced burst of eight pulses at a frequency of 2.5 MHz produced 11 V spikes at the transducer with a fall time under 100 nsec and a rise time of approximately 300 nsec. The peak current per pulse was 25 mA through the transducer element. These results show the feasibility of applying optoelectronic technology to replace conventional electronic transmitter technology.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:42 ,  Issue: 2 )