Cart (Loading....) | Create Account
Close category search window
 

A low-power analog sampled-data VLSI architecture for equalization and FDTS/DF detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carley, L.R. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Bracken, K.C. ; Mittal, R. ; Park, J.

The design philosophy behind a low-power integrated circuit architecture for implementing an FDTS/DF magnetic recording channel is presented. The goal of this philosophy is to achieve high clock speed, moderate power consumption, and relatively small die area. The principle components that are considered are a programmable FIR sampled-data analog equalizer and an analog sampled-data FDTS/DF detector. These blocks are implemented using sampled-data analog signal processing circuitry to avoid the need for a high-speed high-power analog-to-digital converter. Novel features of the FIR equalizer architecture include sampling of current rather than voltage, which allows extremely high sampling bandwidth; and, analog multiplication using MOS devices in their linear region which achieves a power dissipation on the order of 5 mW/tap at 100 MS/s.<>

Published in:

Magnetics, IEEE Transactions on  (Volume:31 ,  Issue: 2 )

Date of Publication:

March 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.