By Topic

3-D plasma armature railgun simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kondrashov, D. ; Center for Laser Applications, Tennessee Univ. Space Inst., Tullahoma, TN, USA ; Keefer, D.

A three-dimensional Navier-Stokes code has been extended to provide a simulation for the railgun plasma armature. This code was previously used with an approximate electromagnetic model to provide a two-dimensional simulation of a railgun plasma armature flow in the plane containing the insulators. A new three-dimensional electromagnetic solver has been incorporated into the code to permit full 3-D nonsteady MHD simulations of the plasma armature flow in a railgun. The finite-difference equations for magnetic vector potential and electric potential are solved using the ICCG method. The new electromagnetic solver was validated using 3-D solutions obtained from the finite element electromagnetic code MEGA. A full bore, 3-D simulation of a plasma armature reveals flow patterns significantly different than those of rail or insulator plane 2-D simulations. In particular, the maximum J/spl times/B force occurs off-axis and results in a plasma flow away from the projectile along the axis of symmetry. A zone of high shear flow forms near the rail surfaces which increases the viscous losses. Zones of low current, nearly stagnant flow form near the base of the projectile, consistent with experimental observations of a buffer between the armature and the projectile.<>

Published in:

Magnetics, IEEE Transactions on  (Volume:31 ,  Issue: 1 )