By Topic

VLSI architectures for video compression-a survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pirsch, P. ; Hannover Univ., Germany ; Demassieux, N. ; Gehrke, W.

The paper presents an overview on architectures for VLSI implementations of video compression schemes as specified by standardization committees of the ITU and ISO. VLSI implementation strategies are discussed and split into function specific and programmable architectures. As examples for the function oriented approach, alternative architectures for DCT and block matching will be evaluated. Also dedicated decoder chips are included Programmable video signal processors are classified and specified as homogeneous and heterogenous processor architectures. Architectures are presented for reported design examples from the literature. Heterogenous processors outperform homogeneous processors because of adaptation to the requirements of special, subtasks by dedicated modules. The majority of heterogenous processors incorporate dedicated modules for high performance subtasks of high regularity as DCT and block matching. By normalization to a fictive 1.0 μm CMOS process typical linear relationships between silicon area and through-put rate have been determined for the different architectural styles. This relationship indicates a figure of merit for silicon efficiency

Published in:

Proceedings of the IEEE  (Volume:83 ,  Issue: 2 )