Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Pulse buildup dynamics of an actively mode-locked laser diode array in the external cavity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chi-Luen Wanga ; Inst. of Electro-opt. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Jahn-Chung Kuo ; Chang, C.-S. ; Ci-Ling Pan

Dynamic pulse evolution characteristics of an actively mode-locked laser diode array in the external cavity have been investigated. Numerical calculations based on modified traveling-wave rate equations reproduce experimentally observed pulse and spectral width evolution and show that the buildup time is about 45 round-trips. We have also performed a theoretical analysis to understand which of the laser operating parameters would affect the buildup dynamics. It is shown that either higher dc bias current or larger radiative recombination coefficient (which is inversely proportional to the excited-state lifetime) will render the laser exhibiting shorter steady-state pulse width and faster evolution to the steady state. Other parameters affecting the buildup, but to a lesser extent, include the radio-frequency (RF) modulation current, spontaneous emission coefficient, and gain coefficient. The power reflectivities of the output mirror and the antireflection coated diode facet, on the other hand, have little effect on the pulse width and buildup time for single pulse generation

Published in:

Quantum Electronics, IEEE Journal of  (Volume:31 ,  Issue: 3 )