By Topic

Isolated Mandarin syllable recognition using segmental features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang, S. ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chen, S.-H.

A segment-based speech recognition scheme is proposed. The basic idea is to model explicitly the correlation among successive frames of speech signals by using features representing contours of spectral parameters. The speech signal of an utterance is regarded as a template formed by directly concatenating a sequence of acoustic segments. Each constituent acoustic segment is of variable length in nature and represented by a fixed dimensional feature vector formed by coefficients of discrete orthonormal polynomial expansions for approximating its spectral parameter contours. In the training, an automatic algorithm is proposed to generate several segment-based reference templates for each syllable class. In the testing, a frame-based dynamic programming procedure is employed to calculate the matching score of comparing the test utterance with each reference template. Performance of the proposed scheme was examined by simulations on multi-speaker speech recognition for 408 highly confusing isolated Mandarin base-syllables. A recognition rate of 81.1% was achieved for the case using 5-segment, 8-reference template models with cepstral and delta-cepstral coefficients as the recognition features. It is 4.5% higher than that of a well-modelled 12-state, 5-mixture CHMM method using cepstral, delta cepstral, and delta-delta cepstral coefficients

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:142 ,  Issue: 1 )