By Topic

A new method to optimize the satellite broadcasting schedules using the mean field annealing of a Hopfield neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ansari, N. ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Hou, E.S.H. ; Yu, Y.

Reports a new method for optimizing satellite broadcasting schedules based on the Hopfield neural model in combination with the mean field annealing theory. A clamping technique is used with an associative matrix, thus reducing the dimensions of the solution space. A formula for estimating the critical temperature for the mean field annealing procedure is derived, hence enabling the updating of the mean field theory equations to be more economical. Several factors on the numerical implementation of the mean field equations using a straightforward iteration method that may cause divergence are discussed; methods to avoid this kind of divergence are also proposed. Excellent results are consistently found for problems of various sizes

Published in:

Neural Networks, IEEE Transactions on  (Volume:6 ,  Issue: 2 )