By Topic

Performance evaluation of multilayer perceptrons in signal detection and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Z. H. Michalopoulou ; Dept. of Electr. Eng., Duke Univ., Durham, NC, USA ; L. W. Nolte ; D. Alexandrou

Multilayer perceptrons trained with the backpropagation algorithm are tested in detection and classification tasks and are compared to optimal algorithms resulting from likelihood ratio tests. The focus is on the problem of one of M orthogonal signals in a Gaussian noise environment, since both the Bayesian detector and classifier are known for this problem and can provide a measure for the performance evaluation of the neural networks. Two basic situations are considered: detection and classification. For the detection part, it was observed that for the signal-known-exactly case (M=1), the performance of the neural detector converges to the performance of the ideal Bayesian decision processor, while for a higher degree of uncertainty (i.e. for a larger M), the performance of the multilayer perceptron is inferior to that of the optimal detector. For the classification case, the probability of error of the neural network is comparable to the minimum Bayesian error, which can be numerically calculated. Adding noise during the training stage of the network does not affect the performance of the neural detector; however, there is an indication that the presence of noise in the learning process of the neural classifier results in a degraded classification performance

Published in:

IEEE Transactions on Neural Networks  (Volume:6 ,  Issue: 2 )