By Topic

Efficient classification for multiclass problems using modular neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Anand ; Sch. of Comput. & Inf. Sci., Syracuse Univ., NY, USA ; K. Mehrotra ; C. K. Mohan ; S. Ranka

The rate of convergence of net output error is very low when training feedforward neural networks for multiclass problems using the backpropagation algorithm. While backpropagation will reduce the Euclidean distance between the actual and desired output vectors, the differences between some of the components of these vectors increase in the first iteration. Furthermore, the magnitudes of subsequent weight changes in each iteration are very small, so that many iterations are required to compensate for the increased error in some components in the initial iterations. Our approach is to use a modular network architecture, reducing a K-class problem to a set of K two-class problems, with a separately trained network for each of the simpler problems. Speedups of one order of magnitude have been obtained experimentally, and in some cases convergence was possible using the modular approach but not using a nonmodular network

Published in:

IEEE Transactions on Neural Networks  (Volume:6 ,  Issue: 1 )