By Topic

A WH/GSMT-based full-wave analysis for planar transmission lines embedded in multilayered dielectric substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chou Ling-Miao ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Rojas, R.G. ; Pathak, P.H.

A new full-wave analysis method, referred to as the WH/GSMT, is developed to solve multilayered planar transmission line problems. First, the scattering of an obliquely incident parallel plate mode (PPM) by a PEC half plane embedded in a multilayered isotropic dielectric substrate within a PEC parallel plate region is analyzed via the Wiener-Hopf (WH) technique. The solution is then incorporated into the generalized scattering matrix technique (GSMT) to find the (complex) propagation constant and characteristic impedance of the planar transmission lines. The lateral power leakage is taken into account rigorously in the WH/GSMT. Numerical results including the microstrip line, conductor-backed slotline, coupled microstrip lines, and antipodal finlines are presented along with a discussion of the advantages/disadvantages of this method

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 1 )