By Topic

GaAs TUNNETT diodes on diamond heat sinks for 100 GHz and above

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eisele, H. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Haddad, G.I.

Single-drift GaAs TUNNETT diodes were mounted on diamond heat sinks for improved thermal resistance and evaluated around 100 GHz in a radial line full height waveguide cavity. The diodes were fabricated from MBE-grown material originally designed for diodes that operate in CW mode around 100 GHz on integral heat sinks. An RF output power of more than 70 mW with a corresponding DC to RF conversion efficiency of 4.9% was obtained at 105.4 GHz. This is the first successful demonstration of GaAs TUNNETT diodes mounted on diamond heat sinks. To the authors' knowledge, these DC to RF conversion efficiencies and RF power levels are the highest reported to date from TUNNETT diodes and exceed those of any single discrete device made of group III-V materials (GaAs, InP, etc.) at this frequency. Free-running TUNNETT diode oscillators exhibit clean spectra with an excellent phase noise of less than -94 dBc/Hz, measured at a frequency off-carrier of 500 kHz and an RF output power of 40 mW

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 1 )