By Topic

Higher order impedance boundary conditions applied to scattering by coated bodies of revolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hoppe, D.J. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Rahmat-Samii, Y.

In this paper higher order impedance boundary conditions will be employed in the solution of scattering by coated conducting bodies of revolution. The higher order impedance solution reduces the total number of unknowns relative to the exact solution, and produces a system matrix which is less dense than that of the exact solution. The construction of the solution involves two distinct steps. In the first step the body of revolution is replaced by an equivalent set of electric and magnetic currents on its exterior surface which generate the true fields outside the body. An integral equation relating these currents through the free space Green's function is derived. Step two employs the higher order impedance boundary condition to relate the electric and magnetic currents on the surface of the body. This replaces the rigorous solution of the interior problem. The higher order impedance boundary conditions are derived by obtaining an exact impedance boundary condition in the spectral domain for the coated ground plane, approximating the impedances as ratios of polynomials in the transform variables, and employing the Fourier transform. The resulting spatial domain differential equations are solved in conjunction with the integral equation using the method of moments. Several examples of bistatic and monostatic radar cross section for coated bodies of revolution are used to illustrate the accuracy of the higher order impedance boundary condition solution relative to the standard impedance boundary condition solution and the exact solution. The effects of coating thickness, loss, and curvature on the accuracy of the solution are discussed

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:42 ,  Issue: 12 )