Cart (Loading....) | Create Account
Close category search window
 

Study of the capacitively fed microstrip antenna element

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vandenbosch, G.A.E. ; Div. ESAT-TELEMIC, Katholieke Univ., Leuven, Belgium ; Van de Capelle, A.R.

The moment method is used to solve the integral equations describing the capacitively fed rectangular microstrip antenna element. This element consists of a ground plane, a radiating patch, and a small patch located between ground plane and radiating patch. The small patch is fed by a coaxial probe. It excites the radiating patch through capacitive coupling. After checking the accuracy by comparing calculated and measured results, the effect of the capacitor patch is analyzed theoretically. A procedure is given to determine capacitor patches which yield elements matched to the coaxial feed. It is shown how a matched configuration can be found for a given capacitor patch height

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:42 ,  Issue: 12 )

Date of Publication:

Dec 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.