By Topic

Self-organization in a perceptual network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. Linsker ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA

The emergence of a feature-analyzing function from the development rules of simple, multilayered networks is explored. It is shown that even a single developing cell of a layered network exhibits a remarkable set of optimization properties that are closely related to issues in statistics, theoretical physics, adaptive signal processing, the formation of knowledge representation in artificial intelligence, and information theory. The network studied is based on the visual system. These results are used to infer an information-theoretic principle that can be applied to the network as a whole, rather than a single cell. The organizing principle proposed is that the network connections develop in such a way as to maximize the amount of information that is preserved when signals are transformed at each processing stage, subject to certain constraints. The operation of this principle is illustrated for some simple cases.<>

Published in:

Computer  (Volume:21 ,  Issue: 3 )