By Topic

An algorithm to design finite field multipliers using a self-dual normal basis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wang, C.C. ; Commun. Syst. Res. Lab., California Inst. of Technol., Pasadena, CA, USA

The concept of using a self-dual normal basis to design the Massey-Omura finite-field multiplier is presented. An algorithm is given to locate a self-dual normal basis for GF(2m) for odd m. A method to construct the product function for designing the Massey-Omura multiplier is developed. It is shown that the construction of the product function based on a self-dual basis is simpler than that based on an arbitrary normal basis

Published in:

Computers, IEEE Transactions on  (Volume:38 ,  Issue: 10 )