By Topic

Statistical analysis of the performance of information theoretic criteria in the detection of the number of signals in array processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, Q.-T. ; Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada ; Kon Max Wong ; Yip, P.C. ; Reilly, J.P.

The performances of the Akaike (1974) information criterion and the minimum descriptive length criterion methods are examined. The events which lead to erroneous decisions are considered, and, on the basis of these events, the probabilities of error for the two criteria are derived. The probabilities of the first two events are derived based on the asymptotic distribution of the sample eigenvalues of an estimated Hermitian matrix. It is further shown that the probabilities of missing and false alarm for these two criteria can be evaluated to a close approximation. Although the derivation of the probabilities of error is based on an asymptotic analysis, the results are confirmed to be in very close agreement with computer simulation results

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:37 ,  Issue: 10 )