By Topic

Speech recognition using noise-adaptive prototypes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Nadas ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; D. Nahamoo ; M. A. Picheny

A probabilistic mixture mode is described for a frame (the short term spectrum) of speech to be used in speech recognition. Each component of the mixture is regarded as a prototype for the labeling phase of a hidden Markov model based speech recognition system. Since the ambient noise during recognition can differ from that present in the training data, the model is designed for convenient updating in changing noise. Based on the observation that the energy in a frequency band is at any fixed time dominated either by signal energy or by noise energy, the energy is modeled as the larger of the separate energies of signal and noise in the band. Statistical algorithms are given for training this as a hidden variables model. The hidden variables are the prototype identities and the separate signal and noise components. Speech recognition experiments that successfully utilize this model are described

Published in:

IEEE Transactions on Acoustics, Speech, and Signal Processing  (Volume:37 ,  Issue: 10 )