Cart (Loading....) | Create Account
Close category search window
 

Accurate characterisation of DR coupling with new general-purpose CAD program

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christ, A. ; Inst. fur Hochfrequenztech., Tech. Hochschule Darmstadt, West Germany ; Dieudonne, J.M. ; Krozer, V.

It is demonstrated that microwave structures incorporating dielectric resonators (DR) are accurately characterised by means of a 3-dimensional finite-difference CAD package. All major assumptions made so far have been dropped, offering the possibility of a rigorous analysis of the embedding of dielectric resonators into microwave structures. In particular, a finite thickness for the microstrip conductor has been taken into account. The coupling of the DR to a microstrip placed in a metallic housing has been theoretically and experimentally investigated. Theoretical and experimental results are in good agreement and give new insight into DR coupling to microstrip circuits.

Published in:

Electronics Letters  (Volume:25 ,  Issue: 16 )

Date of Publication:

3 Aug. 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.