Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Transmission limitations due to self-phase modulation in optical PSK heterodyne detection systems employing chromatic dispersion equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Takachio, N. ; NTT Transmission Syst. Labs., Kanagawa, Japan ; Norimatsu, S. ; Iwashita, Katsushi ; Yonenaga, K.

Even if the amplitude of a phase-modulated optical signal is constant before transmission, amplitude modulation is caused by fiber chromatic dispersion. As a result, self-phase modulation (SPM) is induced. In optical heterodyne detection, SPM cannot be compensated for by the delay equalizer (electrical domain) used to compensate fiber chromatic dispersion. However, the transmission distance limitation of multi-repeatered coherent transmission systems has not been investigated in the presence of SPM. This paper theoretically and experimentally investigates the transmission distance achievable with a phase-shift-keying (PSK) heterodyne detection system employing in-line optical amplifiers and delay equalization. The calculated results show that equalization is effective when γP0/2B22|<10 in the normal dispersion regime, and γP0/2B22|<15 in the anomalous dispersion regime. Furthermore, the increase in transmission distance achieved by using equalization is experimentally shown in an 8 Gb/s PSK heterodyne transmission experiment using a conventional single-mode (SM) fiber and in-line fiber amplifiers

Published in:

Lightwave Technology, Journal of  (Volume:12 ,  Issue: 2 )