By Topic

On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. A. Joines ; Dept. of Ind. Eng., North Carolina State Univ., Raleigh, NC, USA ; C. R. Houck

We discuss the use of non-stationary penalty functions to solve general nonlinear programming problems (NP) using real-valued GAs. The non-stationary penalty is a function of the generation number; as the number of generations increases so does the penalty. Therefore, as the penalty increases it puts more and more selective pressure on the GA to find a feasible solution. The ideas presented in this paper come from two basic areas: calculus-based nonlinear programming and simulated annealing. The non-stationary penalty methods are tested on four NP test cases and the effectiveness of these methods are reported

Published in:

Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on

Date of Conference:

27-29 Jun 1994