By Topic

Partially adaptive beamforming for correlated interference rejection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qian, F. ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Van Veen, B.D.

Conventional linearly constrained adaptive beamformers often suffer from severe signal cancellation in the presence of interferers correlated with the signal. We propose a partially adaptive beamforming technique for correlated interference rejection in broadband signal environments. The beamformer output mean squared error is decomposed into an interference mean squared error term and an additional signal cancellation term that is due to the presence of correlated interference. Both mean squared errors depend on the adaptation space. The partially adaptive beamforming technique proposed here chooses an adaptation space which results in little signal cancellation while maintaining satisfactory interference cancellation. It is shown that, for a given interference scenario, a partially adaptive beamformer can be designed such that maximum interference cancellation is achieved without any signal cancellation. In practice, an approximate design procedure is provided to accommodate a set of likely interference scenarios. Analysis of the feasibility of this approach is presented. The effectiveness of the technique is demonstrated through examples

Published in:

Signal Processing, IEEE Transactions on  (Volume:43 ,  Issue: 2 )