By Topic

A set of algorithms linking NLMS and block RLS algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Montazeri ; France Telecom, CNET, Issy-les-Moulineaux, France ; P. Duhamel

This paper describes a set of block processing algorithms which contains as extremal cases the normalized least mean squares (NLMS) and the block recursive least squares (BRLS) algorithms. All these algorithms use small block lengths, thus allowing easy implementation and small input-output delay. It is shown that these algorithms require a lower number of arithmetic operations than the classical least mean squares (LMS) algorithm, while converging much faster. A precise evaluation of the arithmetic complexity is provided, and the adaptive behavior of the algorithm is analyzed. Simulations illustrate that the tracking characteristics of the new algorithm are also improved compared to those of the NLMS algorithm. The conclusions of the theoretical analysis are checked by simulations, illustrating that, even in the case where noise is added to the reference signal, the proposed algorithm allows altogether a faster convergence and a lower residual error than the NLMS algorithm. Finally, a sample-by-sample version of this algorithm is outlined, which is the link between the NLMS and recursive least squares (RLS) algorithms

Published in:

IEEE Transactions on Signal Processing  (Volume:43 ,  Issue: 2 )