Cart (Loading....) | Create Account
Close category search window

A numerical solution to full-vector electromagnetic scattering by three-dimensional nonlinear bounded dielectrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Caorsi, S. ; Dept. of Biophys. & Electron. Eng., Genoa Univ., Italy ; Massa, A. ; Pastorino, M.

This paper deals with electromagnetic scattering by nonlinear dielectric objects. In particular, a numerical approach is developed that is aimed at determining the distributions of the electromagnetic field vector inside a three-dimensional nonlinear, inhomogeneous, isotropic scatterer illuminated by a time-periodic incident electric field vector. An integral-equation formulation for the full-vector scattering problem is considered, and the nonlinear effect is taken into account by introducing equivalent sources and a Fourier-series representation. A system of integral equations (for each harmonic vector component and for the static term) is obtained that includes the internal electric field distribution as the unknown. After discretization, the solution is reduced to solving an algebraic system of nonlinear equations. Some preliminary numerical results are reported concerning scatterers that exhibit a specific (quadratic) dependence of the dielectric permittivity on the total electric field. The harmonic components of the scattered electric field outside the objects are also computed

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 2 )

Date of Publication:

Feb 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.