Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Analysis of transmission lines of finite thickness above a periodically perforated ground plane at oblique orientations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Guangwen Pan ; Dept. of Electr. Eng. & Comput. Sci., Wisconsin Univ., Milwaukee, WI, USA ; Xiaojun Zhu ; Gilbert, B.K.

A general method is formulated for the analysis of signal lines of finite thickness in the presence of a periodically perforated ground plane. Utilizing the dyadic Green's functions, a set of electric and magnetic field integral equations (EFIE, MFIE) is established, which are then transformed into the spectral domain by the Fourier transform. Galerkin's method is used to solve the combined integral equations. The B-spline functions are chosen as basis functions to achieve a higher order of convergence. The dispersive characteristics of the transmission lines are studied and the characteristic impedance of the signal lines are evaluated by both the voltage-current definition and the power-current definition, with good consistency. The effect of signal locations versus apertures in the ground plane is discussed. Finally, measurements are conducted, and the results agreed very well with the theory

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 2 )