Cart (Loading....) | Create Account
Close category search window

Noise calculations and experimental results of varactor tunable oscillators with significantly reduced phase noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gungerich, V. ; Inst. fur Hochfrequenztech., Tech. Univ. Munchen, Germany ; Zinkler, F. ; Anzill, W. ; Russer, P.

The single-sideband phase noise of varactor tunable GaAs MESFET oscillators is investigated. Two oscillator circuits with different microstrip resonator circuits were designed and fabricated. Using a resonator consisting of coupled microstrip lines instead of a single microstrip line, which is a planar monolithically integrable structure, phase noise is reduced significantly because the quality factor is higher for the coupled resonator. The phase noise is calculated using a nonlinear time domain method, which solves the Langevin equations, describing the deterministic and stochastic behavior of an oscillator by perturbation methods. Calculated and measured phase noise agree within the accuracy of measurements. The very low phase noise of 95 dBc/Hz at 100 kHz offset frequency is achieved

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 2 )

Date of Publication:

Feb 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.