By Topic

A new technique for fully autonomous and efficient 3D robotics hand/eye calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsai, R.Y. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Lenz, R.K.

The authors describe a novel technique for computing position and orientation of a camera relative to the last joint of a robot manipulator in an eye-on-hand configuration. It takes only about 100+64 N arithmetic operations to compute the hand/eye relationship after the robot finishes the movement, and incurs only additional 64 arithmetic operations for each additional station. The robot makes a series of automatically planned movements with a camera rigidly mounted at the gripper. At the end of each move, it takes a total of 90 ms to grab an image, extract image feature coordinates, and perform camera extrinsic calibration. After the robot finishes all the movements, it takes only a few milliseconds to do the calibration. A series of generic geometric properties or lemmas are presented, leading to the derivation of the final algorithms, which are aimed at simplicity, efficiency, and accuracy while giving ample geometric and algebraic insights. Critical factors influencing the accuracy are analyzed, and procedures for improving accuracy are introduced. Test results of both simulation and real experiments on an IBM Cartesian robot are reported and analyzed

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:5 ,  Issue: 3 )