By Topic

Introduction to holospectral imaging in nuclear medicine for scatter subtraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gagnon, D. ; Montreal Heart Inst., Que., Canada ; Todd-Pokropek, A. ; Arsenaualt, A. ; Dupras, G.

An approach to image analysis and processing, called holospectral imaging, is proposed for dealing with Compton scattering contamination in nuclear medicine imaging. The method requires that energy information be available for all detected photons. A set of frames (typically 16) representing the spatial distribution at different energies is then formed. The relationship between these energy frames is analyzed, and the original data is transformed into a series of eigenimages and eigenvalues. In this space it is possible to distinguish the specific contribution to the image of both primary and scattered photons and, in addition, noise. Under the hypothesis that the contribution of the primary photons dominates the image structure, a filtering process can be performed to reduce the scattered contamination. The proportion of scattered information removed by the filtering process is evaluated for all images and depends on the level of residual quantum noise, which is estimated from the size of the smaller eigenvalues. Results indicate a slight increase in the statistical noise but also an increase in contrast and greatly improved ability to quantitate the image

Published in:

Medical Imaging, IEEE Transactions on  (Volume:8 ,  Issue: 3 )